If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^+13x^2-5x=0
We add all the numbers together, and all the variables
13x^2+x=0
a = 13; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·13·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*13}=\frac{-2}{26} =-1/13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*13}=\frac{0}{26} =0 $
| 6x^+13x^2-5x=0 | | 6x^+13x^2-5x=0 | | 6x^+13x^2-5x=0 | | 6x^+13x^2-5x=0 | | 23−11x7=5x | | 23−11x7=5x | | 23−11x7=5x | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-1 | | 8x-12=10x+20 | | 8x-12=10x+20 | | 2/3z=2+3/2z-1/2 | | F(x)=1/2(x-1) | | x-150=-125 | | −12(2x−12)=10 | | 10x+43=15x+12 | | 10x+43=15x+12 | | 3x5+8x5= x5 | | 10x+43=15x+12 | | 10x+43=15x+12 | | -1/4d=3 | | -1/4d=3 | | x+20=5+40 | | 4x÷10=8x-25 | | 4x÷10=8x-25 |